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2 . 1 .  I N T R O D U C T I O N  

The dynamic expansion of communication networks has grown 
considerably during the past two decades to meet the increasing demand of 
sophisticated users. The widespread use of LANs and the advent of new 
technologies such as ATM and frame relay are creating new problems for 
both managers and designers of telecommunication networks. Indeed, the 
design, analysis, and optimization of performance of such systems is a 
nontrivial task. 

Nowadays, simulation plays an important role in computer-aided 
analysis, design, and management of communication networks. In fact, 
simulation technology is maturing and has been successfully applied 
during the design, development, and operational phases. It constitutes the 
only possible way to provide the network engineer with detailed 
information, when he has to decide regarding performance.  

“Simulate before you buy or build” is becoming the norm, 
particularly for the OSISIM (Open Systems Integrated Simulator) project. 
This four-year research project was initiated by the “Université Libre de 
Bruxelles”, represented by “Service Télématique et Communication”, and 
by SAIT Systems, a Belgian company specialized into radio and satellite 
communication. The two main objectives of this project are : i) to set up an 
environment to model and simulate communication systems, and ii) to 
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define a methodology to model, in a generic way, mechanisms, protocols, 
and services related to communication systems. 

One of the most significant criticisms on traditional simulation 
modeling has been the lack of reusability. However, the cost of using 
simulation technology can be reduced through the extensive application of 
model reusability. In addition, reusability is widely believed to be a key to 
improving development productivity and quality1,2. Therefore, reusability 
has been the key-word along the development of this work. 

We address the question of reusability at three levels3: 1) 
reusability for creating new software systems from developed and tested 
software rather than from scratch, 2) reusability for creating complex 
models from building blocks already modeled, and 3) reusability for 
composing common functional elements to create building block models. 

The first level of reusability, which can be considered as a coarse 
grain of reusability, is applied extensively to build an environment for 
modeling and simulation. As we will see later on, a prototype of this 
environment is based on four existing packages which have proved their 
usefulness in their respective field.  

Another approach to reusability is to create components expressed 
in a simulation language and to group them into a library. Thus, a library 
can be defined as a database of reusable components. The issues which 
have to be considered when designing such a library are: what is the 
granularity and domain of application of the library?, how are components 
created, inserted, and maintained?, which relations among components 
may be expressed?, and what kind of knowledge is needed to build 
composite components from the library, while leaving the components 
unchanged in the course of their reuse? 

This type of reusability is adopted to define the second and third 
levels of reusability. The main difference between the two levels is the 
granularity of components. For the second level, components are network 
elements, such as buses, rings, protocols, traffic sources, bridges, satellite 
repeaters, etc. While, the third level of reusability, which is considered as 
the fine grain of reusability, considers the functionalities of a protocol as 
reusable units, such as flow control, error recovery, segmenting, and rate 
control functions. 

This chapter will address these three reusability levels in the three 
following sections. Section two focuses on AMS (Atelier for Modeling and 
Simulation), which is the simulation environment developed in the context 
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of the OSISIM project. Section three describes the communication network 
model unit, called DBM for Detailed Basic Model. Section four describes 
the protocol entity modeling unit which is the function. A conclusion is 
drawn in the last section. 

2 . 2 .  S I M U L A T I O N  E N V I R O N M E N T  :  A M S  

We apply the first level of reusability to design a simulation environment 
for modeling and simulating communication systems. This environment is 
called AMS for Atelier for Modeling and Simulation4,5, and it is designed 
in a modular fashion to allow the integration of several existing software. 

AMS mainly differs from existing tools like OPNET6 (Optimized 
Network Engineering Tool), TOPNET 7 (Tool for the Object oriented, 
Petri net based Network Evaluation and Test), and BONeS8 (Block 
Oriented Network Simulator), in the formal methods and in the way it is 
used to describe the internal structure of the modeled components. OPNET 
is based on a graphical description of an extended finite state machine, and 
on the C language. With TOPNET, a modeled component is described by a 
class of timed Petri nets named PROT networks. BONeS has developed a 
block oriented paradigm. The blocks are graphically assembled and 
primitives written in C are at the lowest level of abstraction. 

Unlike these approaches, ours is based on queueing networks. 
Indeed, queueing network models have come into widespread use as a 
modeling paradigm for deriving analytical as well as simulation based 
performance measures. They are especially effective in modeling computer 
communication systems, including point-to-point communication, 
broadcast systems, distributed multiple access systems, etc. QNAP29 
(Queueing Network Analysis Package 2) has been selected to be the 
modeling and simulation language. It is a package for describing, handling 
and solving large and complex discrete event flow systems. It contains an 
object oriented specification language which is used for the description of 
the models and the control of their resolution. 

In order to provide a wide range of features that facilitate modeling 
of communications networks, AMS includes on one side a library of basic 
models from which the end-user can construct a large number of 
transmission systems and networks, and on the other side several tools to 
edit the architecture, to simulate and to present results. 
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The two following subsections are organized as follows. The 
former describes in more details the functional structure of AMS, while the 
later presents the prototype we developed and which is based on this 
structure. 

2.2 .1  Funct ional  Structure  of  AMS 

AMS is designed in a modular manner. The main modules constituting 
AMS are structured in four phases, each of them is handled by one or 
several processes. These phases are the editing phase, ADL (Architecture 
Description Language) phase, simulation phase and presentation phase. 
Figure 2.1 illustrates this structure. Furthermore, the atelier is based on the 
library of basic models constructed in a very modular fashion to allow 
more flexibility.  

Editing Phase: In this phase, the end-user constructs graphically a 
communication system using the basic models from the AMS library. The 
editing phase is managed by a dedicated process called the graphical editor 
which corresponds to the world view of the network designer, with icons 
that represent rings, buses, bridges, protocols, etc. Several instances of 
basic models can be created and connected by links for a specific 
architecture. The editor has the ability to provide substantial user 
interaction for either simple parameter changes or major reconfigurations 
of systems, and to permit the provision of hierarchical modeling capability 
for extremely large and complex models. On the other hand, an end-user 
without graphical capabilities has to describe his architecture directly in 
the ADL language. 

ADL Phase: This phase mainly consists of translating the 
description written in ADL language into a QNAP2 simulation language. 
In addition, the aim of this phase is to fulfill several objectives mainly the 
definition of a clear border between the editing phase and the simulation 
phase. This separation will enforce the independence between the 
interactive part of the atelier represented by the editor and the 
computational part represented mainly by the simulator. This phase 
permits the design of the editor separately from the design of the 
computational part of the atelier, so that modifications in either tend not to 
cause changes in the other. 
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FIGURE 2.1 : AMS STRUCTURE 

Simulation Phase: The main objective of this phase is to assess the 
performance of a previously edited system. This phase is handled by three 
processes which are the experimenter, the simulator and the post-
processor. The experimenter goal is to help formalizing a proper 
experimental design to obtain the maximum information with the 
minimum number of experiments. The simulator process compiles and 
executes the QNAP2 code generated by the ADL process. The execution 
depends on the experiments defined by the end-user. At the end of the 
execution, all the desired rough results are produced. The recorded results 
of the simulation can be statistically analyzed with the post-processor, so 
that, aggregate parameters of interest can be reported.  

Presentation Phase: This phase is meant to allow different 
presentations of the simulation results. It offers the end-user the possibility 
of supervising the simulation by visualizing its executions. In other words, 
it offers a high level animation showing, for instance, messages passing 
through the simulated architecture. This phase is handled by three 
processes which are the plotter, the animator and the reporter. 

Library of Basic Models : The core of the AMS is the library of 
basic models which includes standard networks such as popular LAN 
technologies (Ethernet, Token Ring, FDDI, etc.), WANs (X25, TCP/IP), 
satellites (TDMA, FDMA, etc.), radio networks, and special network 
components like routers, bridges and gateways. Each basic model 

ADL Compiler

Basic 

Models 

Library 
ADL 
Phase 

Editing 
Phase 

Presentation 
Phase 

Simulation 
Phase Post-Processor Simulator Experimenter

Plotter Reporter Animator

Editor



44 A. COHEN & R. MRABET 
 
 

 

corresponds to a communication entity; it is studied, verified, and validated 
separately. Depending on the phase where a basic model is used, it is 
represented by an icon, an ADL object, or by a QNAP2 object.  

2.2 .2  AMS Prototype  

The first level of reusability is extensively applied. Indeed, a prototype of 
AMS is developed based on four existing and proven packages except the 
ADL language which is developed specially for the atelier. These packages 
are : QNAP2, GSS10 (Graphical Support System), S-PLUS11 and 
MODLINE12. 

Figure 2.2 shows the available tools in the prototype and on which 
packages they are based. The simulator is based on QNAP2, the post-
processor is based on S-PLUS. The graphical editor and the animator are 
based on GSS which provides generic graph edition facilities to make the 
development of graphical performance modeling tools easier. The textual 
editing of an architecture can be done using ADL. The Reporter, Plotter, 
and Experimenter processes are based on MODLINE, a modeling 
environment conceived to assist in all stages of the performance analysis. 
On the other hand, AMS integrates all these packages through MODLINE 
which provides its graphical user’s interface to the atelier. A prototype of 
the atelier has been developed on a SUN machine running the SunOs 
operating system. It is developed in C language. At present time, about 
15000 lines have been coded.  

2 . 3 .  C O M M U N I C A T I O N  N E T W O R K  M O D E L I N G  
U N I T  :  D B M  

So far, we said that the library is composed of basic models. More 
precisely, each basic model is to be detailed so as to reflect its exact 
behavior, and in the following it will be called DBM for Detailed Basic 
Model. We applied the second level of reusability, and DBM will be 
considered as a reusable unit for modeling communication network 
components. Accordingly, it has to implement, as precisely as possible, the 
operations performed by the target component, the component which is 
modeled by means of a DBM. 
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FIGURE 2.2 : AMS PROTOTYPE 

A DBM can be used either as a component of a communication 
network or as a component of a generic model (for example complex 
network component). Thus, a DBM should be constructed in a very 
modular fashion, in order to achieve easily and efficiently this high degree 
of composition between DBMs. 

A DBM is composed of three blocks : the Behavior Engine Block 
(BEB), the Interfaces Block (IB) and the Measurements Block (MeB). The 
structure is designed to meet the following fundamental objectives : 
• Each DBM is self-contained, namely the behavior of the target 

component is modeled inside the DBM, and all the interactions with 
the outside world take place through interfaces. 

• We keep in mind that each DBM may be a component of a 
communication system. Hence, a DBM must be connected to other 
DBMs; connections are made via interfaces. Interfaces have another 
important role, which is to free the BEB of messages exchange 
between the DBM and the outside world. This intends that the BEB has 
to handle only the behavior of the target component and not the issue 
of how to structure the messages. 

• The main objective of modeling is performance assessment. Hence, 
statistical results are required. They will be processed during the 
simulation phase. Each DBM is intended to offer one or several 
measurements, which must be meaningful to an end-user. 

DBMs are designed as objects which can be instantiated several 
times. The instances are linked together so as to mimic a given network 
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architecture or to specialize a generic model. The connection between 
DBM instances have to comply with a set of constraints, in order to 
construct coherent systems which can operate correctly during their 
execution. 

A DBM can be characterized by a number of parameters. The 
parameters are classified into two classes, the configuration parameter's 
class and the performance parameter's class. The parameters of the first 
class are transparent for the end-user, their values depend on the context 
where the DBM is instantiated and/or on some characteristics of the DBM. 
Namely, the values of these parameters are set according to the 
configuration of the network where the DBM is used. The parameters of 
the second class can be used by the end-user to assess the performance of 
the DBM.  

The following sub-sections explain the internal structure of a DBM 
more thoroughly. 

2.3 .1  Behavior  Engine  Block  

The behavior of a target component is modeled within the BEB of its 
associated DBM. The BEB is an open network of stations. Each station 
includes a queue with limited or unlimited capacity, and one or several 
servers. The network of stations is open because it receives from and/or 
sends to the outside, through the interfaces, different messages. The 
configuration of the network of stations and the services offered by each 
station are left to the responsibility of the modeler. The complexity of the 
network of stations heavily depends on the complexity of the target 
component. 

2.3 .2  Interfaces  Block 

The interfaces block is an important part of a DBM for several reasons. 
The modularity aspect of a DBM is reinforced by its presence. It allows the 
modeler to develop a DBM independently of any system of which it can be 
a component. Well-defined interfaces also promote the reuse of the global 
model. Finally, it frees the BEB of the task of message exchange with the 
outside world. 

A DBM can have several interfaces. Their number can either be a 
fixed value known during the modeling phase or it can vary. In the later 
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case, the modeler can progressively add new interfaces to the DBM. A 
given interface can be instantiated one or several times if an instance of the 
current DBM is connected to one or several instances of a DBM through 
this given interface. 

An interface is represented by means of two stations (figure 2.3), 
each station is composed of a queue and a server. The station Qin receives 
messages from the outside, which are meant to be sent later to the BEB. 

Qout receives messages from the BEB to be sent later to another 
DBM, which is connected to it. The services inside Qout and Qin both 
depend on the type of DBM connected to the current DBM as well as the 
type of messages to be handled by the current DBM. 

2.3 .3  Measurements  Block 

The measurements block contains two types of measures. The first type 
reflects the behavior of a DBM, and it is associated with the BEB. The 
second type is associated with the interfaces, and it mainly shows the data 
flow entering and exiting the DBM. 

The modeler of a DBM defines a list of measurements. The 
measurements must be meaningful to an end-user who is not specialized in 
the field of queueing networks. All the aspects related to this field are 
transparent. These measurements must be related to some metrics currently 
used in the field of communication systems, e.g. throughput, response 
delay, etc. 

 
 
 
 
 
 
 
 

 

FIGURE 2.3 : A STANDARD INTERFACE 
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2 . 4 .  P R O T O C O L  E N T I T Y  M O D E L I N G  U N I T  :  
F U N C T I O N  

The fine grain unit of reusability is the concept of function. A function is 
defined in OSI RM13, as part of the activity of a protocol entity, knowing 
that most protocol entities can be expressed in terms of functions. Based 
on this concept, we have developed a methodology14,15 to model protocol 
entities as DBMs, especially, their behavior engine blocks. Presently, only 
the internal structure of a DBM has been defined and not the way to 
describe the BEB. This leaves to the modeler the hard task of its 
description.  

Each function will be separately developed as a reusable unit, 
which will facilitate its implementation, verification, and if necessary its 
maintenance. Based on these reusable units, which interact in a simple and 
well-defined way, the modeler can rapidly build well-structured models of 
protocol entities. Thus, the proposed methodology will help the modeler to 
partly fill the gap between specifying and modeling protocol entities. 

On the other hand, a high degree of service flexibility can be 
provided. Indeed, applications can use efficient communication subsystems 
tailored to their individual needs. Clearly, a protocol entity pattern will be 
composed of a sub-set of functions selected from a library called LoF, for 
Library of Functions. The selection is driven by the application’s needs 
and the services offered by the underlying sub-networks. 

This approach is pursued in many other projects, specially to 
design the new generation of high speed transport protocols for high speed 
communication systems16,17,18,19,20. 

2.4 .1  Funct ion  Concept  

The Library of functions (LoF) is a set of simple functions. LoF = {f1, f2, 
..., fn} with n≥2. A simple function is defined as a function performing one 
task, provided this task is atomic, i.e. it does not need the cooperation of 
other functions to be achieved. A cooperation between functions is 
possible when all or part of the functions are asked to provide a given 
service. Henceforward, only the term “function” will be used instead of 
“simple function”. 

Three types of functions are considered : Prerequisite, Selected and 
Pulled functions. A function is defined as prerequisite, if and only if, it is 
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always present in a protocol entity pattern, whatever the service required. 
A “selected function” is a function which is chosen initially by the modeler 
to be present inside the pattern of a protocol entity. As a rule, a selected 
function has to be present inside the pattern of the protocol entity. A 
“pulled function” is a function which is chosen by the “pattern protocol 
determination process” and which is neither a prerequisite function nor a 
selected function. This type of function has to be present in a protocol 
entity pattern in order to make the pattern consistent. 

Each function fi can perform its task in different ways, which 
implies that it has to be associated with different algorithms (the term 
mechanism is also used). Let us denote : 
• Δi : the set of algorithms associated with fi (Δi ≠∅) 
• Πi : a sub-set of Δi including at least one algorithm (Πi ⊆ Δi and Πi ≠∅) 
• Furthermore, we write fi/Πi to denote that function fi is associated with a    

sub-set of its algorithms. Πi may contain only one algorithm Aij (jth 
algorithm of fi).  

A function fi/Aij is modeled as a module with well-known 
boundaries represented, in our case, by sets of inputs and outputs. Sin(fi, 
Aij) is the set of the object attributes whose values can be used by a 
function fi/Aij during its execution. Clearly, the values of these object 
attributes may be read by the function fi when the algorithm Aij is 
executed. Sin(fi, Aij) is never empty, because when a function is triggered 
by an event, and has to perform a certain job, it has to know at least the 
type of the event and/or the context where this event occurs. 

Sout(fi, Aij) is the set of the object attributes whose values are 
updated by fi during the execution of the algorithm Aij. As for Sin(fi, Aij), it 
may happen that not all the object attributes of Sout(fi, Aij) are updated. 
Sout(fi, Aij) is never empty. 

The functions of LoF can be partitioned into non-empty sub-sets. 
The partitioning is based on the class of events processed by the protocol 
entity, which can be classified into essentially three classes. The first class 
is defined by the arrival of messages from the application layer, the layer 
which asks for a service. The second class is defined by the arrival of 
segments from the sub-network which is beneath the protocol entity layer, 
while the third class is defined by the expiration of timers. This 
partitioning will allow to define a partial order between the functions 
belonging to the same part, while it does not exclude the existence of 
relations between the functions belonging to different parts. 
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2.4 .2  Relat ions  Between Funct ions  

A function may be related to the other functions by means of two graph 
types, precedence graphs and -Graph. In the first type of graph, the partial 
order between functions is captured, while in -graph, mutual presence of 
functions in a protocol is captured. Hereafter, a formal description of these 
two types of graphs. 
1. Precedence Graph. A partial order between the functions belonging to 
the same part of LoF is defined as the acceptable order in which operations 
can be performed. The reason for dependencies could be viewed as some 
sort of shared information, manipulated by a function and required by 
another one. So, the necessary condition for function fi/Aip to precede 
function fj/Ajq is : Sout(fi/Aip) ∩ Sin(fj/Ajq) ≠ ∅. Two main types of 
precedence are defined : strong precedence and weak precedence. 
• Strong Precedence : Function fj/Ajq is preceded strongly by function 

fi/Πi (i ≠ j) means that if fj/Ajq has to be part of a protocol entity pattern 
then fi also has to be part of this pattern with one algorithm belonging to 
Πi (let it be Aip). The statement “a function has to be part of a protocol 
entity pattern” is a general statement which means indirectly that a 
function is either a prerequisite, selected or pulled function. 

• Weak Precedence : Let us assume that function fj/Ajq has to be part of a 
protocol entity pattern. If fj/Ajq is preceded by function fi/Πi (i ≠ j) by 
means of a weak-arc, then fj/Ajq will always be executed even if fi will 
not be part of this pattern. In the case where fi has to be part of the 
pattern then it has to be associated with an algorithm belonging to Πi.  

Definition : A precedence graph Gi, associated with a sub-set Fi, is 
a digraph. The vertices of Gi are the functions of Fi. The Gi arcs represent 
the precedence relation between the functions. An arc is either a “strong-
arc” or a “weak-arc”. Each arc is labeled. If it connects functions fi and fj, 
the label is denoted Lij

pq  (fi/Aip precedes fj/Ajq). Gi has two special vertices, 
the "Begin" vertex and the "End" vertex. The former is not preceded by 
any other vertex, and the later does not precede any vertex. 
2. -Graph. An -Graph is a graph which may have arcs and edges. A 
connector is either an arc or an edge. The vertices of an -Graph are the 
functions of LoF. The two extremities of a connector have to belong to two 
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different parts of LoF. A connector linking two functions fi and fj is labeled 
either by the symbol Γ or the symbol Λ. 

If fi/Πi is connected to fj/Πj by a Γ-labeled (respectively, Λ-labeled) 
connector and the function fi has to be part of a protocol entity pattern with 
an algorithm belonging to Πi then the function fj has also to be part of this 
protocol entity pattern (respectively, the peer protocol entity pattern) 
associated with an algorithm belonging to Πj. The opposite is not true in 
the case where the connector is an arc.  

2.4 .3  Protocol  Ent i ty  Pat tern  

A protocol entity has to be modeled as a DBM to be added to the AMS 
Library. Therefore, the internal structure of a DBM has to be taken into 
account. Figure 2.4 shows the structure of a protocol entity and mainly the 
queueing network modeling the Behavior Engine Block. Actually, the BEB 
is composed of three stations and a specific process, TiM for Timers 
Manager, which is dedicated to the management of timers. The service of 
each station executes the selected functions of a given part.  
 
 
 
 
 
 

 
 
 
 

FIGURE 2.4 : BEB STRUCTURE OF A PROTOCOL ENTITY  

As if the structure of a BEB is simple, it is efficient for two main 
reasons: i) the modeler can recognize in which station service a given 
function should be used, ii) the number of stations is limited to only three 
stations, thus the interactions between the stations are also limited, which 
leads to a reduction of the simulation time of the model. 

Concerning the measurements, they are related to the function 
concept. A measurement will be seen as a hook on a function or a sub-set 
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of functions. A function can be associated with zero, one or more than one 
measurement(s). In the case where at least one measurement is associated 
with one function, this measurement will be used to assess the behavior of 
this function. If a measurement is associated with a group of functions, 
then it will be computed only if all the functions of the group are chosen to 
be part of the pattern of the protocol entity. 

The pattern of a protocol entity will be tailored according to the 
application needs. So, building up a pattern of a protocol entity is driven 
by the required service. A given service can be seen as a set of functions 
which have to be implemented by a protocol entity. External constraints 
which generally come from the sub-network have to be taken into account 
by the modeler when he makes his selections. Indeed, these constraints 
either require to select additional function(s) or on the contrary, to cancel 
the pre-selected function(s).  

We have developed a specific process, called PPDP for Protocol 
Pattern Determination Process. It is used to construct a pattern of a 
protocol entity from LoF which will provide a given service. PPDP uses 
the precedence graphs and the -graph defined for the available functions 
into LoF. PPDP constructs at the same time a pattern of a protocol entity 
and a pattern of its peer-protocol entity. In these two patterns, the 
prerequisite functions have to be present, as well as the selected functions, 
and maybe also other functions to give coherence to the assembled set of 
functions. 

2.4 .4  Example  

XTP21 is one of the most promising full-featured light-weight transfer 
protocols; it provides the functionalities of Network Layer and Transport 
Layer. XTP can provide a full range of services needed to support 
distributed systems. The features of XTP include rate control, selective 
retransmission, no-error mode, etc. 

We model XTP using the function-based methodology described 
above. The functions which are modeled are stored in LoF and are 
partitioned into three parts : Fmsg, Fpack and Ftimer. Each part is 
associated with an event class, arrival of messages, arrival of segments or 
expiration of timers. Figure 2.5 shows the precedence graphs associated 
with Fmsg. Figure 2.6 depicts the -Graph, where only the connected 
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vertices are shown. We assume that each function is associated with only 
one algorithm. 

LoF = {fragmentation, flow control, rate control, padding, 
numbering, retention, transfer DT, go-back-n on wtime, coalesce, un-
padding, resequencing, selective retransmission, rtt estimation, transfer 
CNTL} 

Fmsg = {fragmentation, flow control, rate control, padding, 
numbering, retention, transfer DT} 

Ftimer = {go-back-n on wtime} 
Fpack = {coalesce, un-padding, resequencing, selective 

retransmission, rtt estimation, transfer CNTL}. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 2.5 : PRECEDENCE GRAPH 
OF FMSG 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 2.6 : THE  GRAPH 
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This work has been accomplished in the context of the OSISIM project. 
The main contribution is the emphasis put on the reusability concept, on 
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one side, for designing a simulation environment, and on the other side, for 
defining two different levels of granularity for reusable network 
component libraries. In retrospect, one can clearly see the positive 
potential influence that reusability is having on the development of high 
quality software and models. 

The design of our simulation environment, called AMS, was based 
on existing pieces of software, which proved their usefulness in their 
respective fields. In order to carry out this integration efficiently, a 
modular structure of the atelier was proposed.  

The kernel of the AMS is its library of Detailed Basic Models 
(DBMs). Each DBM was designed in order to comply with the most 
important criterion which is reusability. Indeed, each DBM can be used in 
several network architectures and can be a component of generic and 
composite models. Section 3 was dedicated to the description of the 
internal structure of a DBM.  

The most important contribution of this research is the definition of 
a methodology for modeling protocol entities as DBMs. We then tried to 
partly bridge the gap between specification and modeling. Section 4 
presents this methodology which is based on the concept of function. 
Simple functions are modeled as reusable modules and stored into a 
library. 

The Function Based Methodology was designed to help the 
modeler efficiently and rapidly build new protocols designed for the new 
generation of networks where several services can be provided. These new 
protocols can be dynamically tailored to the user’s requirements.   

The work achieved during this work can be enhanced in many 
directions. The major research direction which emerged during our 
reflection is to apply hybrid simulation modeling (HSM) techniques22,23  in 
order to tackle the main disadvantage of simulation which is the slowness 
of the execution. The goal of HSM is to build models which are, on one 
side, more representative than pure analytical models and, on the other 
side, that lead to a substantial reduction of execution time with respect to 
pure simulation models. The HSM techniques were already used for 
particular situations but reusability was not taken into account. 

In order to define more formally HSM, we refer to the 
classification introduced by Shanthikumar and Sargent24, that distinguishes 
four classes of HSM by considering four different interaction ways 
between simulation and analytical models. Specifically, two of these 
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classes (I and II) include the combination over time of simulation and 
analytical solutions either in parallel or through a joint solution procedure. 
The other two classes (III and IV) consider either a pure analytical or 
simulation model of the total system and use, respectively, a simulation or 
an analytical solution to represent a portion of the system. In our case and 
for reusability purposes, the fourth class of HSM has to be studied more 
thoroughly. Actually, the total system can only be resolved by simulation 
with one or several parts modeled analytically. 
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