
3 9

CHAPTER 2

REUSABILITY TECHNIQUES FOR BUILDING
A SIMULATION ENVIRONMENT AND

MODELING COMMUNICATION SYSTEMS

Atika Cohen and Radouane Mrabet

2 . 1 . I N T R O D U C T I O N

The dynamic expansion of communication networks has grown
considerably during the past two decades to meet the increasing demand of
sophisticated users. The widespread use of LANs and the advent of new
technologies such as ATM and frame relay are creating new problems for
both managers and designers of telecommunication networks. Indeed, the
design, analysis, and optimization of performance of such systems is a
nontrivial task.

Nowadays, simulation plays an important role in computer-aided
analysis, design, and management of communication networks. In fact,
simulation technology is maturing and has been successfully applied
during the design, development, and operational phases. It constitutes the
only possible way to provide the network engineer with detailed
information, when he has to decide regarding performance.

“Simulate before you buy or build” is becoming the norm,
particularly for the OSISIM (Open Systems Integrated Simulator) project.
This four-year research project was initiated by the “Université Libre de
Bruxelles”, represented by “Service Télématique et Communication”, and
by SAIT Systems, a Belgian company specialized into radio and satellite
communication. The two main objectives of this project are : i) to set up an
environment to model and simulate communication systems, and ii) to

40 A. COHEN & R. MRABET

define a methodology to model, in a generic way, mechanisms, protocols,
and services related to communication systems.

One of the most significant criticisms on traditional simulation
modeling has been the lack of reusability. However, the cost of using
simulation technology can be reduced through the extensive application of
model reusability. In addition, reusability is widely believed to be a key to
improving development productivity and quality1,2. Therefore, reusability
has been the key-word along the development of this work.

We address the question of reusability at three levels3: 1)
reusability for creating new software systems from developed and tested
software rather than from scratch, 2) reusability for creating complex
models from building blocks already modeled, and 3) reusability for
composing common functional elements to create building block models.

The first level of reusability, which can be considered as a coarse
grain of reusability, is applied extensively to build an environment for
modeling and simulation. As we will see later on, a prototype of this
environment is based on four existing packages which have proved their
usefulness in their respective field.

Another approach to reusability is to create components expressed
in a simulation language and to group them into a library. Thus, a library
can be defined as a database of reusable components. The issues which
have to be considered when designing such a library are: what is the
granularity and domain of application of the library?, how are components
created, inserted, and maintained?, which relations among components
may be expressed?, and what kind of knowledge is needed to build
composite components from the library, while leaving the components
unchanged in the course of their reuse?

This type of reusability is adopted to define the second and third
levels of reusability. The main difference between the two levels is the
granularity of components. For the second level, components are network
elements, such as buses, rings, protocols, traffic sources, bridges, satellite
repeaters, etc. While, the third level of reusability, which is considered as
the fine grain of reusability, considers the functionalities of a protocol as
reusable units, such as flow control, error recovery, segmenting, and rate
control functions.

This chapter will address these three reusability levels in the three
following sections. Section two focuses on AMS (Atelier for Modeling and
Simulation), which is the simulation environment developed in the context

REUSABILITY TECHNIQUES FOR BUILDING ... 41

of the OSISIM project. Section three describes the communication network
model unit, called DBM for Detailed Basic Model. Section four describes
the protocol entity modeling unit which is the function. A conclusion is
drawn in the last section.

2 . 2 . S I M U L A T I O N E N V I R O N M E N T : A M S

We apply the first level of reusability to design a simulation environment
for modeling and simulating communication systems. This environment is
called AMS for Atelier for Modeling and Simulation4,5, and it is designed
in a modular fashion to allow the integration of several existing software.

AMS mainly differs from existing tools like OPNET6 (Optimized
Network Engineering Tool), TOPNET 7 (Tool for the Object oriented,
Petri net based Network Evaluation and Test), and BONeS8 (Block
Oriented Network Simulator), in the formal methods and in the way it is
used to describe the internal structure of the modeled components. OPNET
is based on a graphical description of an extended finite state machine, and
on the C language. With TOPNET, a modeled component is described by a
class of timed Petri nets named PROT networks. BONeS has developed a
block oriented paradigm. The blocks are graphically assembled and
primitives written in C are at the lowest level of abstraction.

Unlike these approaches, ours is based on queueing networks.
Indeed, queueing network models have come into widespread use as a
modeling paradigm for deriving analytical as well as simulation based
performance measures. They are especially effective in modeling computer
communication systems, including point-to-point communication,
broadcast systems, distributed multiple access systems, etc. QNAP29
(Queueing Network Analysis Package 2) has been selected to be the
modeling and simulation language. It is a package for describing, handling
and solving large and complex discrete event flow systems. It contains an
object oriented specification language which is used for the description of
the models and the control of their resolution.

In order to provide a wide range of features that facilitate modeling
of communications networks, AMS includes on one side a library of basic
models from which the end-user can construct a large number of
transmission systems and networks, and on the other side several tools to
edit the architecture, to simulate and to present results.

42 A. COHEN & R. MRABET

The two following subsections are organized as follows. The
former describes in more details the functional structure of AMS, while the
later presents the prototype we developed and which is based on this
structure.

2.2 .1 Funct ional Structure of AMS

AMS is designed in a modular manner. The main modules constituting
AMS are structured in four phases, each of them is handled by one or
several processes. These phases are the editing phase, ADL (Architecture
Description Language) phase, simulation phase and presentation phase.
Figure 2.1 illustrates this structure. Furthermore, the atelier is based on the
library of basic models constructed in a very modular fashion to allow
more flexibility.

Editing Phase: In this phase, the end-user constructs graphically a
communication system using the basic models from the AMS library. The
editing phase is managed by a dedicated process called the graphical editor
which corresponds to the world view of the network designer, with icons
that represent rings, buses, bridges, protocols, etc. Several instances of
basic models can be created and connected by links for a specific
architecture. The editor has the ability to provide substantial user
interaction for either simple parameter changes or major reconfigurations
of systems, and to permit the provision of hierarchical modeling capability
for extremely large and complex models. On the other hand, an end-user
without graphical capabilities has to describe his architecture directly in
the ADL language.

ADL Phase: This phase mainly consists of translating the
description written in ADL language into a QNAP2 simulation language.
In addition, the aim of this phase is to fulfill several objectives mainly the
definition of a clear border between the editing phase and the simulation
phase. This separation will enforce the independence between the
interactive part of the atelier represented by the editor and the
computational part represented mainly by the simulator. This phase
permits the design of the editor separately from the design of the
computational part of the atelier, so that modifications in either tend not to
cause changes in the other.

REUSABILITY TECHNIQUES FOR BUILDING ... 43

FIGURE 2.1 : AMS STRUCTURE

Simulation Phase: The main objective of this phase is to assess the
performance of a previously edited system. This phase is handled by three
processes which are the experimenter, the simulator and the post-
processor. The experimenter goal is to help formalizing a proper
experimental design to obtain the maximum information with the
minimum number of experiments. The simulator process compiles and
executes the QNAP2 code generated by the ADL process. The execution
depends on the experiments defined by the end-user. At the end of the
execution, all the desired rough results are produced. The recorded results
of the simulation can be statistically analyzed with the post-processor, so
that, aggregate parameters of interest can be reported.

Presentation Phase: This phase is meant to allow different
presentations of the simulation results. It offers the end-user the possibility
of supervising the simulation by visualizing its executions. In other words,
it offers a high level animation showing, for instance, messages passing
through the simulated architecture. This phase is handled by three
processes which are the plotter, the animator and the reporter.

Library of Basic Models : The core of the AMS is the library of
basic models which includes standard networks such as popular LAN
technologies (Ethernet, Token Ring, FDDI, etc.), WANs (X25, TCP/IP),
satellites (TDMA, FDMA, etc.), radio networks, and special network
components like routers, bridges and gateways. Each basic model

ADL Compiler

Basic

Models

Library
ADL
Phase

Editing
Phase

Presentation
Phase

Simulation
Phase Post-Processor Simulator Experimenter

Plotter Reporter Animator

Editor

44 A. COHEN & R. MRABET

corresponds to a communication entity; it is studied, verified, and validated
separately. Depending on the phase where a basic model is used, it is
represented by an icon, an ADL object, or by a QNAP2 object.

2.2 .2 AMS Prototype

The first level of reusability is extensively applied. Indeed, a prototype of
AMS is developed based on four existing and proven packages except the
ADL language which is developed specially for the atelier. These packages
are : QNAP2, GSS10 (Graphical Support System), S-PLUS11 and
MODLINE12.

Figure 2.2 shows the available tools in the prototype and on which
packages they are based. The simulator is based on QNAP2, the post-
processor is based on S-PLUS. The graphical editor and the animator are
based on GSS which provides generic graph edition facilities to make the
development of graphical performance modeling tools easier. The textual
editing of an architecture can be done using ADL. The Reporter, Plotter,
and Experimenter processes are based on MODLINE, a modeling
environment conceived to assist in all stages of the performance analysis.
On the other hand, AMS integrates all these packages through MODLINE
which provides its graphical user’s interface to the atelier. A prototype of
the atelier has been developed on a SUN machine running the SunOs
operating system. It is developed in C language. At present time, about
15000 lines have been coded.

2 . 3 . C O M M U N I C A T I O N N E T W O R K M O D E L I N G
U N I T : D B M

So far, we said that the library is composed of basic models. More
precisely, each basic model is to be detailed so as to reflect its exact
behavior, and in the following it will be called DBM for Detailed Basic
Model. We applied the second level of reusability, and DBM will be
considered as a reusable unit for modeling communication network
components. Accordingly, it has to implement, as precisely as possible, the
operations performed by the target component, the component which is
modeled by means of a DBM.

REUSABILITY TECHNIQUES FOR BUILDING ... 45

FIGURE 2.2 : AMS PROTOTYPE

A DBM can be used either as a component of a communication
network or as a component of a generic model (for example complex
network component). Thus, a DBM should be constructed in a very
modular fashion, in order to achieve easily and efficiently this high degree
of composition between DBMs.

A DBM is composed of three blocks : the Behavior Engine Block
(BEB), the Interfaces Block (IB) and the Measurements Block (MeB). The
structure is designed to meet the following fundamental objectives :
• Each DBM is self-contained, namely the behavior of the target

component is modeled inside the DBM, and all the interactions with
the outside world take place through interfaces.

• We keep in mind that each DBM may be a component of a
communication system. Hence, a DBM must be connected to other
DBMs; connections are made via interfaces. Interfaces have another
important role, which is to free the BEB of messages exchange
between the DBM and the outside world. This intends that the BEB has
to handle only the behavior of the target component and not the issue
of how to structure the messages.

• The main objective of modeling is performance assessment. Hence,
statistical results are required. They will be processed during the
simulation phase. Each DBM is intended to offer one or several
measurements, which must be meaningful to an end-user.

DBMs are designed as objects which can be instantiated several
times. The instances are linked together so as to mimic a given network

46 A. COHEN & R. MRABET

architecture or to specialize a generic model. The connection between
DBM instances have to comply with a set of constraints, in order to
construct coherent systems which can operate correctly during their
execution.

A DBM can be characterized by a number of parameters. The
parameters are classified into two classes, the configuration parameter's
class and the performance parameter's class. The parameters of the first
class are transparent for the end-user, their values depend on the context
where the DBM is instantiated and/or on some characteristics of the DBM.
Namely, the values of these parameters are set according to the
configuration of the network where the DBM is used. The parameters of
the second class can be used by the end-user to assess the performance of
the DBM.

The following sub-sections explain the internal structure of a DBM
more thoroughly.

2.3 .1 Behavior Engine Block

The behavior of a target component is modeled within the BEB of its
associated DBM. The BEB is an open network of stations. Each station
includes a queue with limited or unlimited capacity, and one or several
servers. The network of stations is open because it receives from and/or
sends to the outside, through the interfaces, different messages. The
configuration of the network of stations and the services offered by each
station are left to the responsibility of the modeler. The complexity of the
network of stations heavily depends on the complexity of the target
component.

2.3 .2 Interfaces Block

The interfaces block is an important part of a DBM for several reasons.
The modularity aspect of a DBM is reinforced by its presence. It allows the
modeler to develop a DBM independently of any system of which it can be
a component. Well-defined interfaces also promote the reuse of the global
model. Finally, it frees the BEB of the task of message exchange with the
outside world.

A DBM can have several interfaces. Their number can either be a
fixed value known during the modeling phase or it can vary. In the later

REUSABILITY TECHNIQUES FOR BUILDING ... 47

case, the modeler can progressively add new interfaces to the DBM. A
given interface can be instantiated one or several times if an instance of the
current DBM is connected to one or several instances of a DBM through
this given interface.

An interface is represented by means of two stations (figure 2.3),
each station is composed of a queue and a server. The station Qin receives
messages from the outside, which are meant to be sent later to the BEB.

Qout receives messages from the BEB to be sent later to another
DBM, which is connected to it. The services inside Qout and Qin both
depend on the type of DBM connected to the current DBM as well as the
type of messages to be handled by the current DBM.

2.3 .3 Measurements Block

The measurements block contains two types of measures. The first type
reflects the behavior of a DBM, and it is associated with the BEB. The
second type is associated with the interfaces, and it mainly shows the data
flow entering and exiting the DBM.

The modeler of a DBM defines a list of measurements. The
measurements must be meaningful to an end-user who is not specialized in
the field of queueing networks. All the aspects related to this field are
transparent. These measurements must be related to some metrics currently
used in the field of communication systems, e.g. throughput, response
delay, etc.

FIGURE 2.3 : A STANDARD INTERFACE

BEB

Qout

Qin

Another DBM
D
B
M

MeB

48 A. COHEN & R. MRABET

2 . 4 . P R O T O C O L E N T I T Y M O D E L I N G U N I T :
F U N C T I O N

The fine grain unit of reusability is the concept of function. A function is
defined in OSI RM13, as part of the activity of a protocol entity, knowing
that most protocol entities can be expressed in terms of functions. Based
on this concept, we have developed a methodology14,15 to model protocol
entities as DBMs, especially, their behavior engine blocks. Presently, only
the internal structure of a DBM has been defined and not the way to
describe the BEB. This leaves to the modeler the hard task of its
description.

Each function will be separately developed as a reusable unit,
which will facilitate its implementation, verification, and if necessary its
maintenance. Based on these reusable units, which interact in a simple and
well-defined way, the modeler can rapidly build well-structured models of
protocol entities. Thus, the proposed methodology will help the modeler to
partly fill the gap between specifying and modeling protocol entities.

On the other hand, a high degree of service flexibility can be
provided. Indeed, applications can use efficient communication subsystems
tailored to their individual needs. Clearly, a protocol entity pattern will be
composed of a sub-set of functions selected from a library called LoF, for
Library of Functions. The selection is driven by the application’s needs
and the services offered by the underlying sub-networks.

This approach is pursued in many other projects, specially to
design the new generation of high speed transport protocols for high speed
communication systems16,17,18,19,20.

2.4 .1 Funct ion Concept

The Library of functions (LoF) is a set of simple functions. LoF = {f1, f2,
..., fn} with n≥2. A simple function is defined as a function performing one
task, provided this task is atomic, i.e. it does not need the cooperation of
other functions to be achieved. A cooperation between functions is
possible when all or part of the functions are asked to provide a given
service. Henceforward, only the term “function” will be used instead of
“simple function”.

Three types of functions are considered : Prerequisite, Selected and
Pulled functions. A function is defined as prerequisite, if and only if, it is

REUSABILITY TECHNIQUES FOR BUILDING ... 49

always present in a protocol entity pattern, whatever the service required.
A “selected function” is a function which is chosen initially by the modeler
to be present inside the pattern of a protocol entity. As a rule, a selected
function has to be present inside the pattern of the protocol entity. A
“pulled function” is a function which is chosen by the “pattern protocol
determination process” and which is neither a prerequisite function nor a
selected function. This type of function has to be present in a protocol
entity pattern in order to make the pattern consistent.

Each function fi can perform its task in different ways, which
implies that it has to be associated with different algorithms (the term
mechanism is also used). Let us denote :
• Δi : the set of algorithms associated with fi (Δi ≠∅)
• Πi : a sub-set of Δi including at least one algorithm (Πi ⊆ Δi and Πi ≠∅)
• Furthermore, we write fi/Πi to denote that function fi is associated with a

sub-set of its algorithms. Πi may contain only one algorithm Aij (jth
algorithm of fi).

A function fi/Aij is modeled as a module with well-known
boundaries represented, in our case, by sets of inputs and outputs. Sin(fi,
Aij) is the set of the object attributes whose values can be used by a
function fi/Aij during its execution. Clearly, the values of these object
attributes may be read by the function fi when the algorithm Aij is
executed. Sin(fi, Aij) is never empty, because when a function is triggered
by an event, and has to perform a certain job, it has to know at least the
type of the event and/or the context where this event occurs.

Sout(fi, Aij) is the set of the object attributes whose values are
updated by fi during the execution of the algorithm Aij. As for Sin(fi, Aij), it
may happen that not all the object attributes of Sout(fi, Aij) are updated.
Sout(fi, Aij) is never empty.

The functions of LoF can be partitioned into non-empty sub-sets.
The partitioning is based on the class of events processed by the protocol
entity, which can be classified into essentially three classes. The first class
is defined by the arrival of messages from the application layer, the layer
which asks for a service. The second class is defined by the arrival of
segments from the sub-network which is beneath the protocol entity layer,
while the third class is defined by the expiration of timers. This
partitioning will allow to define a partial order between the functions
belonging to the same part, while it does not exclude the existence of
relations between the functions belonging to different parts.

50 A. COHEN & R. MRABET

2.4 .2 Relat ions Between Funct ions

A function may be related to the other functions by means of two graph
types, precedence graphs and -Graph. In the first type of graph, the partial
order between functions is captured, while in -graph, mutual presence of
functions in a protocol is captured. Hereafter, a formal description of these
two types of graphs.
1. Precedence Graph. A partial order between the functions belonging to
the same part of LoF is defined as the acceptable order in which operations
can be performed. The reason for dependencies could be viewed as some
sort of shared information, manipulated by a function and required by
another one. So, the necessary condition for function fi/Aip to precede
function fj/Ajq is : Sout(fi/Aip) ∩ Sin(fj/Ajq) ≠ ∅. Two main types of
precedence are defined : strong precedence and weak precedence.
• Strong Precedence : Function fj/Ajq is preceded strongly by function

fi/Πi (i ≠ j) means that if fj/Ajq has to be part of a protocol entity pattern
then fi also has to be part of this pattern with one algorithm belonging to
Πi (let it be Aip). The statement “a function has to be part of a protocol
entity pattern” is a general statement which means indirectly that a
function is either a prerequisite, selected or pulled function.

• Weak Precedence : Let us assume that function fj/Ajq has to be part of a
protocol entity pattern. If fj/Ajq is preceded by function fi/Πi (i ≠ j) by
means of a weak-arc, then fj/Ajq will always be executed even if fi will
not be part of this pattern. In the case where fi has to be part of the
pattern then it has to be associated with an algorithm belonging to Πi.

Definition : A precedence graph Gi, associated with a sub-set Fi, is
a digraph. The vertices of Gi are the functions of Fi. The Gi arcs represent
the precedence relation between the functions. An arc is either a “strong-
arc” or a “weak-arc”. Each arc is labeled. If it connects functions fi and fj,
the label is denoted Lij

pq (fi/Aip precedes fj/Ajq). Gi has two special vertices,
the "Begin" vertex and the "End" vertex. The former is not preceded by
any other vertex, and the later does not precede any vertex.
2. -Graph. An -Graph is a graph which may have arcs and edges. A
connector is either an arc or an edge. The vertices of an -Graph are the
functions of LoF. The two extremities of a connector have to belong to two

REUSABILITY TECHNIQUES FOR BUILDING ... 51

different parts of LoF. A connector linking two functions fi and fj is labeled
either by the symbol Γ or the symbol Λ.

If fi/Πi is connected to fj/Πj by a Γ-labeled (respectively, Λ-labeled)
connector and the function fi has to be part of a protocol entity pattern with
an algorithm belonging to Πi then the function fj has also to be part of this
protocol entity pattern (respectively, the peer protocol entity pattern)
associated with an algorithm belonging to Πj. The opposite is not true in
the case where the connector is an arc.

2.4 .3 Protocol Ent i ty Pat tern

A protocol entity has to be modeled as a DBM to be added to the AMS
Library. Therefore, the internal structure of a DBM has to be taken into
account. Figure 2.4 shows the structure of a protocol entity and mainly the
queueing network modeling the Behavior Engine Block. Actually, the BEB
is composed of three stations and a specific process, TiM for Timers
Manager, which is dedicated to the management of timers. The service of
each station executes the selected functions of a given part.

FIGURE 2.4 : BEB STRUCTURE OF A PROTOCOL ENTITY

As if the structure of a BEB is simple, it is efficient for two main
reasons: i) the modeler can recognize in which station service a given
function should be used, ii) the number of stations is limited to only three
stations, thus the interactions between the stations are also limited, which
leads to a reduction of the simulation time of the model.

Concerning the measurements, they are related to the function
concept. A measurement will be seen as a hook on a function or a sub-set

Upper Interface

TiM

Lower Interface

SS
ST

SM

52 A. COHEN & R. MRABET

of functions. A function can be associated with zero, one or more than one
measurement(s). In the case where at least one measurement is associated
with one function, this measurement will be used to assess the behavior of
this function. If a measurement is associated with a group of functions,
then it will be computed only if all the functions of the group are chosen to
be part of the pattern of the protocol entity.

The pattern of a protocol entity will be tailored according to the
application needs. So, building up a pattern of a protocol entity is driven
by the required service. A given service can be seen as a set of functions
which have to be implemented by a protocol entity. External constraints
which generally come from the sub-network have to be taken into account
by the modeler when he makes his selections. Indeed, these constraints
either require to select additional function(s) or on the contrary, to cancel
the pre-selected function(s).

We have developed a specific process, called PPDP for Protocol
Pattern Determination Process. It is used to construct a pattern of a
protocol entity from LoF which will provide a given service. PPDP uses
the precedence graphs and the -graph defined for the available functions
into LoF. PPDP constructs at the same time a pattern of a protocol entity
and a pattern of its peer-protocol entity. In these two patterns, the
prerequisite functions have to be present, as well as the selected functions,
and maybe also other functions to give coherence to the assembled set of
functions.

2.4 .4 Example

XTP21 is one of the most promising full-featured light-weight transfer
protocols; it provides the functionalities of Network Layer and Transport
Layer. XTP can provide a full range of services needed to support
distributed systems. The features of XTP include rate control, selective
retransmission, no-error mode, etc.

We model XTP using the function-based methodology described
above. The functions which are modeled are stored in LoF and are
partitioned into three parts : Fmsg, Fpack and Ftimer. Each part is
associated with an event class, arrival of messages, arrival of segments or
expiration of timers. Figure 2.5 shows the precedence graphs associated
with Fmsg. Figure 2.6 depicts the -Graph, where only the connected

REUSABILITY TECHNIQUES FOR BUILDING ... 53

vertices are shown. We assume that each function is associated with only
one algorithm.

LoF = {fragmentation, flow control, rate control, padding,
numbering, retention, transfer DT, go-back-n on wtime, coalesce, un-
padding, resequencing, selective retransmission, rtt estimation, transfer
CNTL}

Fmsg = {fragmentation, flow control, rate control, padding,
numbering, retention, transfer DT}

Ftimer = {go-back-n on wtime}
Fpack = {coalesce, un-padding, resequencing, selective

retransmission, rtt estimation, transfer CNTL}.

FIGURE 2.5 : PRECEDENCE GRAPH
OF FMSG

FIGURE 2.6 : THE GRAPH

2 . 5 . C O N C L U S I O N S A N D F U T U R E D I R E C T I O N S

This work has been accomplished in the context of the OSISIM project.
The main contribution is the emphasis put on the reusability concept, on

Fragmentation

padding

Numbering

Retention

un-padding

coalesce

Resequencing

Selective
retransmission

go-back-n on
wtimer

Γ

Γ

Λ

Λ

Λ

Fmsg

Ftimer

Fragmentation

padding

Retention

Transfer DT

Begin

End

Numbering

Flow control

Rate control

54 A. COHEN & R. MRABET

one side, for designing a simulation environment, and on the other side, for
defining two different levels of granularity for reusable network
component libraries. In retrospect, one can clearly see the positive
potential influence that reusability is having on the development of high
quality software and models.

The design of our simulation environment, called AMS, was based
on existing pieces of software, which proved their usefulness in their
respective fields. In order to carry out this integration efficiently, a
modular structure of the atelier was proposed.

The kernel of the AMS is its library of Detailed Basic Models
(DBMs). Each DBM was designed in order to comply with the most
important criterion which is reusability. Indeed, each DBM can be used in
several network architectures and can be a component of generic and
composite models. Section 3 was dedicated to the description of the
internal structure of a DBM.

The most important contribution of this research is the definition of
a methodology for modeling protocol entities as DBMs. We then tried to
partly bridge the gap between specification and modeling. Section 4
presents this methodology which is based on the concept of function.
Simple functions are modeled as reusable modules and stored into a
library.

The Function Based Methodology was designed to help the
modeler efficiently and rapidly build new protocols designed for the new
generation of networks where several services can be provided. These new
protocols can be dynamically tailored to the user’s requirements.

The work achieved during this work can be enhanced in many
directions. The major research direction which emerged during our
reflection is to apply hybrid simulation modeling (HSM) techniques22,23 in
order to tackle the main disadvantage of simulation which is the slowness
of the execution. The goal of HSM is to build models which are, on one
side, more representative than pure analytical models and, on the other
side, that lead to a substantial reduction of execution time with respect to
pure simulation models. The HSM techniques were already used for
particular situations but reusability was not taken into account.

In order to define more formally HSM, we refer to the
classification introduced by Shanthikumar and Sargent24, that distinguishes
four classes of HSM by considering four different interaction ways
between simulation and analytical models. Specifically, two of these

REUSABILITY TECHNIQUES FOR BUILDING ... 55

classes (I and II) include the combination over time of simulation and
analytical solutions either in parallel or through a joint solution procedure.
The other two classes (III and IV) consider either a pure analytical or
simulation model of the total system and use, respectively, a simulation or
an analytical solution to represent a portion of the system. In our case and
for reusability purposes, the fourth class of HSM has to be studied more
thoroughly. Actually, the total system can only be resolved by simulation
with one or several parts modeled analytically.

2 . 6 . R E F E R E N C E S

[1] W. TRACZ, Software Reuse: Emerging Technology (IEEE
Computer Society Press, 1990).

[2] E.T. SAULNIER and B.J. BORTSCHELLER, “Simulation
Model Reusability”, IEEE Communications Magazine, 32, 64
(1994).

[3] R. MRABET, “Reusability and Hierarchical Simulation
Modeling of Communication Systems for Performance
Evaluation. Simulation Environment, Basic and Generic Models,
Transfer Protocols.” Ph.D. Thesis, Applied Sciences Faculty,
Université Libre de Bruxelles, Brussels, Belgium, June 1995.

[4] A. COHEN and R. MRABET, “AMS : An Integrated Simulator
for Open Systems”, Proceedings of IEEE GLOBECOM’93
Conference, (Houston, Texas, 29 November - 2 December 1993),
656.

[5] COHEN and R. MRABET, “An environment for Modelling and
Simulating Communication Systems, Application to a System
Based on a Satellite Backbone”, The International Journal of
Satellite Communications, 13, 147 (1995).

[6] F.H. DESBRANDES, S. BERTOLOTTI, and L. DUNAND,
“OPNET 2.4: An Environment for Communication Network
Modeling and Simulation”, Proceedings of European Simulation
Symposium, (Delft, The Netherlands, October 1993), 609.

[7] M. A. MARSAN, G. BALBO, G. BRUNO, and F. NERI,
"TOPNET : A Tool for the Visual Simulation of Communication
Networks", IEEE Journal on Selected Areas in Communications,

56 A. COHEN & R. MRABET

8, 1735 (1990).
[8] K. S. SHANMUGAN, V. S. FROST, and W. LARUE, "A block-

Oriented Network Simulator", Simulation, 83 (1992).
[9] SIMULOG S.A. "QNAP2 User's Manual", Version 10, (1992).
[10] SIMULOG S.A. "GSS User's Guide", Version 4, (1992).
[11] MATHSOFT INC. STASCI, “S-PLUS User’s Guide”, Version

3.2, (1993).
[12] SIMULOG S.A “MODLINE User’s Guide”, Version 3.3, (1995).
[13] ISO International Standard 7498, “Information processing

systems ⎯ Open Systems Interconnection : Basic Reference
Model”, (1984).

[14] A. COHEN and R. MRABET, “Function-based Methodology to
Model Communication Protocols for Performance Evaluation”,
Proceedings of International Conference on Communication
Systems, (Singapore, 14-18 November 1994), 90.

[15] A. COHEN and R. MRABET, “Modeling Function-Based
Communication Protocols Entities for Performance Assessment,
Application to XTP”, Proceedings of Twelfth International
Conference on Computer Communication, (Seoul, South Korea,
21-24 August 1995), 75.

[16] D.D. CLARK and D.L. TENNENHOUSE, “Architectural
Considerations for a New Generation of Protocols”, Computer
Communications Review, 20, 200 (1990).

[17] Z. HASS, “A Protocol Structure for High-Speed Communication
over Broadband ISDN”, IEEE Network Magazine, 5, 64 (1991).

[18] M. ZITTERBART, “High-Speed Transport Components”, IEEE
Network Magazine, 5, 54-63 (1991).

[19] D.C. FELDMEIER, “A Framework of the Architectural
Concepts for High-Speed Communication Systems”, IEEE
Journal on Selected Areas in Communications, 11, 480 (1993).

[20] D.C. SCHMIDT and T. SUDA, “Transport System Architecture
Services for High-Performance Communications Systems”, IEEE
Journal on Selected Areas in Communications, 11, 489 (1993).

[21] Protocol Engine Inc., Xpress Transfer Protocol, Version 4.0
(1995).

[22] V.S. FROST, W.WOOD LARUE, and K.S. SHANMUGAN,
“Efficient Techniques for the Simulation of Computer
Communications Networks”, IEEE Journal on Selected Areas in

REUSABILITY TECHNIQUES FOR BUILDING ... 57

Communications, 6, 146 (1988).
[23] S. BALSAMO, M. CAPPUCIO, L. DONATIELLO, and R.

MIRANDOLA, “Some Remarks on Hybrid Simulation
Methodology”, Proceedings of Summer Computer Simulation
Conference, (Calgary, Canada, 16-18 July 1990), 30.

[24] J.G. SHANTHIKUMAR and R.G. SARGENT, “A Unifying
View of Hybrid Simulation/Analytic Models and Modeling”,
Operations Research, 31, 1031 (1983).

